[Evaluation of several commercial attenuation correction software programs installed by vendors for data processing: a simulation phantom study].

نویسندگان

  • Norikazu Matsutomo
  • Hideo Onishi
  • Akio Nagaki
چکیده

PURPOSE An attenuation correction is necessary to improve quantitative SPECT evaluation. The aim of this study was to evaluate the performance of several different types of commercial attenuation correction algorithms. METHODS We investigated the performance of four attenuation correction algorithms using a simulation phantom with and without scatter. The attenuation correction was performed on clinical SPECT workstations: GMS5500/PI (Toshiba), GMS7700/A (Toshiba), e.soft (Siemens), and Xeleris (GE). Then, the effect of the attenuation correction was evaluated using the count profile curve and attenuation coefficient that maintained uniformity of the radioisotope distribution in the uniform region of the images. RESULTS In the without-scatter condition, the count profile curve showed a similar shape on all workstations. The attenuation coefficients that maintained uniformity were 0.134, 0.133, 0.133, and 0.135 cm(-1) using GMS5500/PI, GMS7700/A, e.soft, and Xeleris, respectively. There was no significant difference among these workstations. With scatter, the attenuation coefficients differed by 0.109-0.121 cm(-1) with the types of attenuation correction algorithms. CONCLUSION Without scatter, the effects of the attenuation corrections were equivalent. However, with scatter, a few differences were observed in the effects of correction with several types of algorithms. Therefore, our results suggest that careful evaluation should be considered when different types of clinical SPECT workstations are used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to scatter correction in SPECT images based on Klein_Nishina equation

Introduction: Scattered photon is one of the main defects that degrade the quality and quantitative accuracy of nuclear medicine images. Accurate estimation of scatter in projection data of SPECT is computationally extremely demanding for activity distribution in uniform and non-uniform dense media. Methods: The objective of this paper is to develop and validate a scatter correction technique ...

متن کامل

Evaluation of attenuation correction process in cardiac SPECT images

  Introduction: Attenuation correction is a useful process for improving myocardial perfusion SPECT and is dependent on activity and distribution of attenuation coefficients in the body (attenuation map). Attenuation artifacts are a common problem in myocardial perfusion SPECT. The aim of this study was to compare the effect of attenuation correction using different a...

متن کامل

Qualitative evaluation of Chang method of attenuation correction on heart SPECT by using custom made heart phantom

SPECT detects γ-rays from administered radiopharmaceutical within the patient body. γ-rays pass through different tissues before reaching detectors and are attenuated. Attenuation can cause artifacts; therefore different methods are used to minimize attenuation effects. In our study efficacy of Chang method was evaluated for attenuation purpose, using a custom made heart phantom. Due to d...

متن کامل

Review of transmission scanning configurations in cardiac SPECT

The diagnostic accuracy of single photon emission computed tomography (SPECT) is profoundly influenced by attenuation phenomenon. Soft tissue attenuation degrades cardiac SPECT image quality, thereby decreasing the possibility of the detection of the lesions. A variety of correction techniques based on different assumptions have been used to reduce the impact of attenuation. Several types of sy...

متن کامل

New approach for attenuation correction in SPECT images, using linear optimization

Background: Photon attenuation as an inevitable physical phenomenon influences on the diagnostic information of SPECT images and results to errors in accuracy of quantitative measurements. This can be corrected via different physical or mathematical approaches. As the correction equation in mathematical approaches is nonlinear, in this study a new method of linearization called ‘Piece ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nihon Hoshasen Gijutsu Gakkai zasshi

دوره 67 5  شماره 

صفحات  -

تاریخ انتشار 2011